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In this talk we consider extensions of the classic Brouwer, Borsuk–Ulam, KKM and Kakutani
fixed point theorems as well as its discrete analogs Sperner, Tucker and Ky Fan lemmas [1, 2,
3, 4, 5].

Let Mn be a closed PL manifold with a free simplicial involution T : M →M , i.e. T 2(x) = x
and T (x) 6= x for all x ∈ M . We say that a map f : M → Rd is antipodal (or equivariant) if
f(T (x)) = −f(x). We call a pair (M, T ) as a BUT (Borsuk-Ulam Type) manifold if for if for
any continuous antipodal f : Mn → Rn the zeros set Zf := f−1(0) is not empty. We proved
the following theorem:

Theorem 1. Let Mn be a closed connected manifold with a free involution T . Then the
following statements are equivalent:
(a) M is BUT.
(b) M admits an antipodal continuous transversal map h : Mn → Rn with |Zh| = 4k+2, k ∈ Z.
(c) M is a Tucker type manifold, i.e. for any equivariant triangulation Λ of M and for any
Tucker’s labeling of vertices V (Λ) there is a complementary edge.
(d) M is a Lyusternik-Shnirelman type manifold, i.e. for any cover F1, . . . , Fn+1 of Mn

by n + 1 closed (respectively, by n + 1 open) sets, there is at least one set containing a pair
(x, T (x)).
(e) (KKM type) For any covering of M by a family of 2n closed sets {C1, C−1, . . . , Cn, C−n},
where Ci and C−i are antipodal, i. e. C−i = T (Ci), for all i = 1, . . . , d, then there is k such
that Ck and C−k have a common intersection point.
(f) (Kakutani type) Let F : M → 2Rn

be a set-valued function on M with a closed graph
and the property that for all x ∈ M, F (x) 6= ∅, F (x) is convex in Rn and there is y ∈ F (x)
such that (−y) ∈ F (T (x)). Then there is x0 ∈M such that F (x0) covers the origin 0 ∈ Rn.

Sperner’s lemma is a statement about labellings (colorings) of triangulated simplices (d-
balls). It is a discrete analog of the Brouwer fixed point theorem. In particular, we found a
generalization of this lemma.

Theorem 2. Let Md be a compact oriented manifold with boundary. Let Λ be a triangu-
lation of M with the vertex set V (Λ). Then any labelling L : V (Λ) → {1, 2, . . . , d + 1} must
contain at least | deg(L, ∂Λ)| fully-colored simplices.

In this talk we also consider generalizations of the polytopal Sperner lemma, Tucker’s lemma
and the Ky Fan lemma for triangulations and quadrangulations.

References

[1] O. R. Musin, Borsuk-Ulam type theorems for manifolds, Proc. Amer. Math. Soc. 140 (2012), 2551-2560.
[2] O. R. Musin, Extensions of Sperner and Tucker’s lemma for manifolds, arXiv:1212.1899.
[3] O. R. Musin, KKM and Kakutani type Borsuk-Ulam theorems, arXiv:1405.1579
[4] O. R. Musin, Around Sperner’s lemma, arXiv:1405.7513.
[5] O. R. Musin, Sperner type lemma for quadrangulations, arXiv:1406.5082

Department of Mathematics, University of Texas at Brownsville, One West University
Boulevard, Brownsville, TX, 78520, USA & IITP RAS, Bolshoy Karetny per. 19, Moscow,
127994, Russia

E-mail address: oleg.musin@utb.edu

1


