HOMOTOPY TYPES OF MOMENT-ANGLE COMPLEXES

TARAS PANOV

The moment-angle complex \mathcal{Z}_K is a cell complex composed of products of discs D^2 and circles S^1 which are parametrised by faces of a simplicial complex K. The complex \mathcal{Z}_K has a natural torus action. By replacing the pair (D^2, S^1) by an arbitrary pair of spaces (X, A) we obtain the notion of the polyhedral product $(X, A)^K$. This construction is currently studied actively in toric topology and homotopy theory, and has many geometric interpretations. For example, the moment-angle complex $\mathcal{Z}_K = (D^2, S^1)^K$ is homotopy equivalent to the complement of the arrangement of coordinate subspaces in \mathbb{C}^m defined by the simplicial complex K. If K is the boundary of a simplicial polytopes (or, more generally, comes from a complete simplicial fan), then \mathcal{Z}_K is a smooth manifold. It admits quite interesting non-Kähler complex-analytic structures generalising the well-known series of Hopf and Calabi–Eckmann manifolds.

In our talk we consider the classes of simplicial complexes K whose corresponding momentangle complex \mathcal{Z}_K has homotopy type of a wedge of spheres or connected sum of sphere products. In the case of flag complexes we obtain a complete characterisation of these classes, both in algebraic and combinatorial terms. For wedges of spheres, the criterion is as follows: the 1-skeleton of K must be a chordal graph (this notions features in the combinatorial theory of optimisation on graphs). We also calculate explicitly the number of spheres in the wedge. The loop spaces of \mathcal{Z}_K and $(\mathbb{C}P^{\infty}, pt)^K$ are homotopy equivalent to products of spheres and loops on spheres, and we show that the canonical map $\mathcal{Z}_K \to (\mathbb{C}P^{\infty}, pt)^K$ can be described by iterated Whitehead products of two-dimensional spherical classes.

The talk is based on the joint work [1].

References

[1] J. Grbic, T. Panov, S. Theriault, J. Wu, "Homotopy types of moment-angle complexes", preprint; arXiv:1211.0873.

DEPARTMENT OF MATHEMATICS AND MECHANICS, LOMONOSOV MOSCOW STATE UNIVERSITY, LENINSKIE GORY, MOSCOW 119 991 RUSSIA

Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow *E-mail address*: tpanov@mech.math.msu.su

The work was supported by the Russian Science Foundation (grant no. 14-11-00414).