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Abstract

This paper is a concise introduction to virtual knot theory, coupled with a
list of research problems in this field.
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The purpose of this paper is to give an introduction to virtual knot theory and
to record a collection of research problems that the authors have found fascinat-
ing. The second section of the paper introduces the theory and discusses some
problems in that context. Starting from the third sections, we present specific
problems. This paper is an expanded and revised version of our earlier paper



on the subject of problems in virtual knot theory (see [47]). Here we include a
wider selection of problems, including some problems of a combinatorial flavor in
classical knot theory and other problems in extensions and variants of the theory
of knots and links.
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2 Knot Theories

2.1 Virtual knot theory

Knot theory studies the embeddings of curves in three-dimensional space. Virtual
knot theory studies the embeddings of curves in thickened surfaces of arbitrary



genus, up to the addition and removal of empty handles from the surface. Virtual
knots have a special diagrammatic theory that makes handling them very similar
to the handling of classical knot diagrams. In fact, this diagrammatic theory
simply involves adding a new type of crossing to the knot diagrams, a wvirtual
crossing that is neither under nor over. From a combinatorial point of view, the
virtual crossings are artifacts of the representation of the virtual knot or link
in the plane. The extension of the Reidemeister moves that takes care of them
respects this viewpoint. A virtual crossing (see Fig. 1) is represented by two
crossing arcs with a small circle placed around the crossing point.

Moves on virtual diagrams generalize the Reidemeister moves for classical
knot and link diagrams, see Fig. 1. One can summarize the moves on virtual
diagrams by saying that the classical crossings interact with one another accord-
ing to the usual Reidemeister moves. One adds the detour moves for consecutive
sequences of virtual crossings and this completes the description of the moves on
virtual diagrams. It is a consequence of moves (B) and (C) in Fig. 1 that an arc
going through any consecutive sequence of virtual crossings can be moved any-
where in the diagram keeping the endpoints fixed; the places where the moved
arc crosses the diagram become new virtual crossings. This replacement is the
detour move, see Fig. 2.

One can generalize many structures in classical knot theory to the virtual
domain, and use the virtual knots to test the limits of classical problems such as
the question whether the Jones polynomial [41, 76, 77, 78, 81, 82, 87, 89, 115, 189,
218] detects knots and other classical problems. Counterexamples often exist in
the virtual domain, and it is an open problem whether these counterexamples
are equivalent (by addition and subtraction of empty handles) to classical knots
and links. Virtual knot theory is a significant domain to be investigated for its
own sake and for a deeper understanding of classical knot theory.

Another way to understand the meaning of virtual diagrams is to regard
them as representatives for oriented Gauss codes (Gauss diagrams) [60, 91, 93].
Such codes do not always have planar realizations and an attempt to embed
such a code in the plane leads to the production of the virtual crossings. The
detour move makes the particular choice of virtual crossings irrelevant. Virtual
equivalence is the same as the equivalence relation generated on the collection
of oriented Gauss codes modulo an abstract set of Reidemeister moves on the
codes.

2.2 Flat virtual knots and links

Every classical knot or link diagram can be regarded as a 4-regular plane graph
with extra structure at the nodes. This extra structure is usually indicated by
the over and under crossing conventions that give instructions for constructing
an embedding of the link in three dimensional space from the diagram. If we take
the diagram without this extra structure, it is the shadow of some link in three
dimensional space, but the weaving of that link is not specified. It is well known
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that if one is allowed to apply the Reidemeister moves to such a shadow (without
regard to the types of crossing since they are not specified) then the shadow can
be reduced to a disjoint union of circles. This reduction is no longer true for
virtual links. More precisely, let a flat virtual diagram be a diagram with virtual
crossings as we have described them and flat crossings consisting in undecorated
nodes of the 4-regular plane graph. Virtual crossings are flat crossings that
have been decorated by a small circle. Two flat virtual diagrams are equivalent
if there is a sequence of generalized flat Reidemeister moves (as illustrated in
Fig. 1) taking one to the other. A generalized flat Reidemeister move is any
move as shown in Fig. 1, but one can ignore the over or under crossing structure.
Note that in studying flat virtual knots the rules for changing virtual crossings
among themselves and the rules for changing flat crossings among themselves are
identical. However, detour moves as in Fig. 1C are available for virtual crossings
with respect to flat crossings and not the other way around.

We shall say that a virtual diagram overlies a flat diagram if the virtual
diagram is obtained from the flat diagram by choosing a crossing type for each
flat crossing in the virtual diagram. To each virtual diagram K there is an
associated flat diagram F'(K) that is obtained by forgetting the extra structure
at the classical crossings in K. Note that if K is equivalent to K’ as virtual
diagrams, then F(K) is equivalent to F(K') as flat virtual diagrams. Thus, if
we can show that F'(K) is not reducible to a disjoint union of circles, then it will
follow that K is a non-trivial virtual link.

Fig. 3 illustrates an example of a flat virtual link H. This link cannot be
undone in the flat category because it has an odd number of virtual crossings be-
tween its two components and each generalized Reidemeister move preserves the
parity of the number of virtual crossings between components. Also illustrated in
Fig. 3 is a flat diagram D and a virtual knot K that overlies it. This example is
given in [93]. The knot shown is undetectable by many invariants (fundamental
group, Jones polynomial) but it is knotted. The flat virtual diagrams present a
challenge for the construction of new invariants. It is important to understand
the structure of flat virtual knots and links. This structure lies at the heart of the
comparison of classical and virtual links. Simpler and more fundamental than
flat virtual knots and links are the free knots and links [175, 176] corresponding to
Gauss diagrams with no signs and no arrows. We will list a number of problems
about free knots below.

2.3 Interpretation of virtual knots as stable classes of
links in thickened surfaces

There is a useful topological interpretation for this virtual theory in terms of
embeddings of links in thickened surfaces, see [93, 97, 138]. Regard each virtual
crossing as a shorthand for a detour of one of the arcs in the crossing through
a 1-handle that has been attached to the 2-sphere of the original diagram. By
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interpreting each virtual crossing in this way, we obtain an embedding of a col-
lection of circles into a thickened surface S,y x R, where g is the number of virtual
crossings in the original diagram L, S, is a compact oriented surface of genus g
and R denotes the real line. We say that two such surface embeddings are stably
equivalent if one can be obtained from another by isotopy in the thickened sur-
faces, homeomorphisms of the surfaces and the addition or subtraction of empty
handles. Then we have the following theorem.

Theorem 2.1 (see [93, 107, 138]). Two virtual link diagrams are equivalent if
and only if their correspondent surface embeddings are stably equivalent.

Here long knots (or, equivalently 1 — 1 tangles) come into play. Having a
knot, we can break it at some point and take its ends to infinity (say, in a way
that they coincide with the horizontal axis line in the plane). One can study
isotopy classes of such knots. A well-known theorem says that in the classical
case, knot theory coincides with long knot theory. However, this is not the case
for virtual knots. By breaking the same virtual knot at different points, one can
obtain non-isotopic long knots [7, 163]. Furthermore, even if the initial knot is
trivial, the resulting long knot may not be trivial. A connected sum of two trivial
virtual diagrams may not be trivial in the compact case. The phenomenon occurs
because these two knot diagrams may be non-trivial in the long category. It is
sometimes more convenient to consider long virtual knots rather than compact
virtual knots, since connected sum is well-defined for long knots.

Unlike classical knots, the connected sum of long virtual knots is not com-
mutative [7, 162, 163]. Thus, if we show that two long knots K; and K3 do not
commute, then we see that they are different and both non-classical.

A typical example of such knots is the two parts of the Kishino knot, see
Fig. 4.

We have a natural map

(Long virtual knots ) — (Oriented compact virtual knots),

obtained by taking two infinite ends of the long knots together to make a compact
knot. This map is obviously well defined.

Note that when the parts of the Kishino knot are closed they become unknots.

This map allows one to construct long virtual knot invariants from classical
invariants, i.e., just to regard compact knot invariants as long knot invariants.
There is no well-defined inverse for this map. The long category can also be
applied for the case of flat virtual knots, where all problems formulated above
occur as well.

3 Switching and Virtualizing

Given a crossing ¢ in a link diagram, we define s(7) to be the result of switching
that crossing so that the undercrossing arc becomes an overcrossing arc and vice
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Figure 4: Kishino and parts

versa. We also define the virtualization v(i) of the crossing by the local replace-
ment indicated in Fig. 5. In this figure we illustrate how in the virtualization of
the crossing the original crossing is replaced by a crossing that is flanked by two
virtual crossings.

Suppose that K is a (virtual or classical) diagram with a classical crossing
labeled 7. Let K*() be the diagram obtained from K by virtualizing the crossing
i while leaving the rest of the diagram just as before. Let K*() be the diagram
obtained from K by switching the crossing ¢ while leaving the rest of the diagram
just as before. Then it follows directly from the definition of the Jones polynomial
that

Vigs () = Vigoio (1)
As far as the Jones polynomial is concerned, switching a crossing and virtualizing
a crossing look the same.

The involutory quandle [90] is an algebraic invariant equivalent to the fun-
damental group of the double branched cover of a knot or link in the classical
case. In this algebraic system one associates a generator of the algebra IQ(K)
to each arc of the diagram K and there is a relation of the form ¢ = ab at each
crossing, where ab denotes the (non-associative) algebra product of a and b in
IQ(K). See Fig. 6. In this Figure we have illustrated through the local relations
the fact that

IQ(KY) = IQ(K).
As far the involutory quandle is concerned, the original crossing and the virtu-
alized crossing look the same.



N
1

D
L]

4
—

~.
=

Figure 5: Switching and virtualizing a crossing

e=| ab =l
Jdh\ ‘ JAR
b b b ij
a 7‘(1

Figure 6: IQ(Virt(K)) = IQ(K)

If a classical knot is actually knotted, then its involutory quandle is non-
trivial [217]. Hence if we start with a non-trivial classical knot, we can virtualize
any subset of its crossings to obtain a virtual knot that is still non-trivial. There
is a subset A of the crossings of a classical knot K such that the knot SK
obtained by switching these crossings is an unknot. Let Virt(K) denote the
virtual diagram obtained from A by virtualizing the crossings in the subset A.
By the above discussion the Jones polynomial of Virt(K) is the same as the
Jones polynomial of SK, and this is 1 since SK is unknotted. On the other
hand, the IQ of Virt(K) is the same as the IQ of K, and hence if K is knotted,
then so is Virt(K). We have shown that Virt(K) is a non-trivial virtual knot
with unit Jones polynomial. This completes the proof of the theorem.

If there exists a classical knot with unit Jones polynomial, then one of the
knots Virt(K) produced by this theorem may be equivalent to a classical knot.
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It is an intricate task to verify that specific examples of Virt(K') are not classical.

A very fruitful line of new invariants comes about by examining a general-
ization of the fundamental group or quandle that we call the biquandle of the
virtual knot. The biquandle is discussed in the next Section. Invariants of flat
knots (when one has them) are useful in this regard. If we can verify that the flat
knot F'(Virt(K)) is non-trivial, then Virt(K) is non-classical. In this way the
search for classical knots with unit Jones polynomial (see [208] for links) expands
to the exploration of the structure of the infinite collection of virtual knots with
unit Jones polynomial.

Another way of putting this theorem is as follows: In the arena of knots in
thickened surfaces there are many examples of knots with unit Jones polynomial.
Might one of these be equivalent via handle stabilization to a classical knot?
In [138] Kuperberg shows the uniqueness of the embedding of minimal genus in
the stable class for a given virtual link. The minimal embedding genus can be
strictly less than the number of virtual crossings in a diagram for the link. There
are many problems associated with this phenomenon.

4 Atoms

An atom is a pair: (M2, T') where M? is a closed 2-manifold and T is a 4-valent
graph in M? dividing M? into cells such that these cells admit a checkerboard
coloring (the coloring is also fixed). T"is called the frame of the atom, see [56,
57, 58, 59, 145, 146, 162, 164].

Atoms are considered up to natural equivalence, that is, up to homeomor-
phisms of the underlying manifold M2 mapping the frame to the frame and black
cells to black cells. From this point of view, an atom can be recovered from the
frame together with the following combinatorial structure:

1. A-structure: This indicates which edges for each vertex are opposite edges.
That is, it indicates the cyclic structure at the vertex.

2. B-structure: This indicates pairs of “black angles”. That is, one divides
the four edges emanating from each vertex into two sets of adjacent (not
opposite) edges such that the black cells are locally attached along these
pairs of adjacent edges.

Given a virtual knot diagram which has its regions black and white colored
like a chess board, one can construct the corresponding atom as follows. Clas-
sical crossings correspond to the vertices of the atom, and generate both the
A-structure and the B-structure at these vertices (the B-structure comes from
over/under information). Thus, an atom is uniquely determined by a virtual
knot diagram. It is easy to see that the inverse operation is well defined modulo
virtualization. Thus the atom knows everything about the bracket polynomial
(Jones polynomial) of the virtual link.

11



The crucial notions here are the minimal genus of the atom and the ori-
entability of the atom. For instance, for each link diagram with a corresponding
orientable atom (all classical link diagrams are in this class), all degrees of the
bracket are congruent modulo four while in the non-orientable case they are
congruent only modulo two.

The orientability condition is crucial in the construction of the Khovanov
homology theory for virtual links as in [162, 164].

5 Biquandles

5.1 Main constructions

In this section we give a sketch of some recent approaches to invariants of virtual
knots and links.

A biquandle [5, 14, 19, 46, 97, 124] is an algebra with four binary operations
written a’, ap, a, ag together with some relations which we will indicate below.
The fundamental biquandle is associated with a link diagram and is invariant
under the generalized Reidemeister moves for virtual knots and links. The op-
erations in this algebra are motivated by the formation of labels for the edges
of the diagram, see Fig 7. In this figure we have shown the format for the op-
erations in a biquandle. The overcrossing arc has two labels, one on each side
of the crossing. There is an algebra element labeling each edge of the diagram.
An edge of the diagram corresponds to an edge of the underlying plane graph of
that diagram.

Let the edges oriented toward a crossing in a diagram be called the input
edges for the crossing, and the edges oriented away from the crossing be called
the output edges for the crossing. Let a and b be the input edges for a positive
crossing, with a the label of the undercrossing input and b the label on the
overcrossing input. In the biquandle, we label the undercrossing output by

c:ab,

while the overcrossing output is labeled
d = b,.

The labelling for the negative crossing is similar using the other two opera-
tions.

To form the fundamental biquandle, BQ(K), we take one generator for each
edge of the diagram and two relations at each crossing (as described above).

Another way to write this formalism for the biquandle is as follows

a>=a blay=a bla®=a b,agza&.

We call this the operator formalism for the biquandle.
These considerations lead to the following definition.

12



Figure 7: Biquandle relations at a crossing

Definition 5.1. A biquandle B is a set with four binary operations indicated
above: a’.a’, ap, az. We shall refer to the operations with barred variables as
the left operations and the operations without barred variables as the right oper-
ations. The biquandle is closed under these operations and the following axioms

are satisfied:

1. Given an element a in B, then there exists an x in the biquandle such that
x = az and a = % There also exists a y in the biquandle such that y = a¥
and a = yg.

2. For any elements a and b in B we have
bba 7 _ _ bbg 3 _
a=a ,b—baﬁ,a—a “b=b_7.

3. Given elements a and b in B then there exist elements x, y, z, ¢t such that
ry=a,y"=bb" =y, ag=xand t° =b, ay = 2z, z; = a, b* = t.
The biquandle is called strong if x, vy, 2, t are uniquely defined and we then
write z = qp-1,y = 0%t = b,z = az-1, reflecting the invertive nature
of the elements.

4. For any a, b, cin B the following equations hold and the same equations hold
when all right operations are replaced in these equations by left operations:
a% = aCbbc7 Cba = Cqbp,» (ba)cab = (bc)acb-

These axioms are transcriptions of the Reidemeister moves.The first axiom
transcribes the first Reidemeister move. The second axiom transcribes the di-
rectly oriented second Reidemeister move. The third axiom transcribes the re-
verse oriented Reidemeister move. The fourth axiom transcribes the third Rei-
demeister move. Much more work is needed in exploring these algebras and their
applications to knot theory.

13



We may simplify the appearance of these conditions by defining
S(a,b) = (bg,a®), S(a,b) = (b7, az)
and in the case of a strong biquandle,
ST(a,b) = (b, a5-1), ST(a,b) = (b* ,ap1)

and

SHab) =0, d =05, )

and

S(ab)=(bg, avt) = (b1, a’ )
which we call the sideways operators. The conditions then reduce to
5SS =55=1,
(Sx1)(1x8)(Sx1)=(1xS8)(Sx1)(1xS)
S St =5.5"=1
and finally all the sideways operators leave the diagonal
A ={(a,a)la € X}

invariant. There is a different and possibly simpler approach in [45].
Here the sideways operator is used to define the up and down actions. So if
F: X? — X2 denotes the sideways operator then let

F(a,b) = (ba, a") = (fa(b), f*(a).

The sideways operator is required to satisfy the following:

1) Fis a bijection,

2) f« is a bijection,

3) f* is a bijection.
Then S, the switch operator, is defined by

S(ba,a) = (a®,b).

It turns out, symmetrically, that

1) S is a bijection,

2) s, is a bijection,

3) s* is a bijection,
where S(z,y) = (s*(y), sy(z)).

The advantage of this approach is that the conditions for S to satisfy the
Yang—Baxter type equations above is that

1) a* =a®,  2) ¢y = cap, and  3) b = 0%

and for a biquandle a® = a4, which are considerably simpler than the above.

14



5.2 The Alexander biquandle

It is not hard to see that the following equations in a module over Z[s, s =1, ¢, ¢ 1]
give a biquandle structure:

ab:aﬂ:ta+(l—st)b, ab:aﬂ:sa
b = am =t la+(1—s't1b, o= a& = s la.

We shall refer to this structure, with the equations given above, as the Alezander
Bigquandle.

Just as one can define the Alexander Module of a classical knot, we have the
Alexander Biquandle of a virtual knot or link, obtained by taking one generator
for each edge of the projected graph of the knot diagram and taking the module
relations in the above linear form. Let ABQ(K) denote this module structure for
an oriented link K. That is, ABQ(K) is the module generated by the edges of
the diagram, factored by the submodule generated by the relations. This module
then has a biquandle structure specified by the operations defined above for an
Alexander Biquandle.

The determinant of the matrix of relations obtained from the crossings of a
diagram gives a polynomial invariant (up to multiplication by #s't/ for integers
i and j) of knots and links that we denote by Gk (s,t) and call the generalized
Alexander polynomial. This polynomial vanishes on classical knots, but is re-
markably successful at detecting virtual knots and links. In fact Gk (s,t) is the
same as the polynomial invariant of virtual knots of Sawollek [199] and defined by
an alternative method by Silver and Williams [202] and by yet another method
by Manturov [154]. It is a reformulation of the invariant for knots in surfaces
due to the principal investigator, Jaeger and Saleur [75, 125].

We end this discussion of the Alexander Biquandle with two examples that
show clearly its limitations. View Figure 8. In this figure we illustrate two di-
agrams labeled K and K. It is not hard to calculate that both Gk(s,t) and
Ggi(s,t) are equal to zero. However, The Alexander Biquandle of K is non-
trivial — it is isomorphic to the free module over Z[s,s~!,t,t71] generated by
elements a and b subject to the relation (s™' —¢ — 1)(a — b) = 0. Thus K rep-
resents a non-trivial virtual knot. This shows that it is possible for a non-trivial
virtual diagram to be a connected sum of two trivial virtual diagrams. However,
the diagram K1 has a trivial Alexander Biquandle. In fact the diagram K[,
discovered by Kishino [1], is now known to be knotted and its general biquandle
is non-trivial. The Kishino diagram has been shown non-trivial by a calculation
of the three-strand Jones polynomial [132], by the surface bracket polynomial of
Dye and Kauffman [31, 35], by the =-polynomial (the surface generalization of
the Jones polynomial of Manturov [155], and its biquandle has been shown to
be non-trivial by a quaternionic biquandle representation [5] which we will now
briefly describe.

The quaternionic biquandle is defined by the following operations where i2 =
j2 = k? = ijk = -1, ij = —ji = k, jk = —kj = i, ki = —ik = j in the

15
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Figure 8: The knot K and the Kishino diagram K1

associative, non-commutative algebra of the quaternions. The elements a, b are
in a module over the ring of integer quaternions:

ab:aj:j-a—%(ljti)-b
ab—aJ —j-a+(14+1)-0,
a :aT:j-aJr(l—z‘).b,

aL —j-a+(1—1)-0.

Amazingly, one can verify that these operations satisfy the axioms for the bi-
quandle.
Equivalently, referring back to the previous section, define the linear biquan-

dle by
_( 1+d gt
S_<—jt1 1+i>’

where 4, j have their usual meanings as quaternions and t is a central variable.
Let R denote the ring which they determine. Then as in the Alexander case
considered above, for each diagram there is a square presentation of an R-module.
We can take the (Study) determinant of the presentation matrix. In the case
of the Kishino knot this is zero. However the greatest common divisor of the
codimension 1 determinants is 2+ 5t? +2t* showing that this knot is not classical.
There are many other developments in the theory of virtual knots. We shall
refer to them as need be in composing the problems. We refer the reader to our
list of papers and particularly the introductory paper [96] and the book [184].

6 Biracks, Biquandles etc:

6.1 Main definitions

Let X be a set of labels. Numerous knot invariants can be defined by a switch
map, S: X% — X2

16



There are various axioms which S may or may not satisfy. They are listed
below in no particular order:

1. Invertibility of S: The map S is a bijection.

2. Right Invertibility of the Binary Products: Let i, j.: X — X? be the
inclusions i,(y) = (a,y) and jy(x) = (z,b). Let p, ¢: X?> — X be the
projections p(a,b) = a and ¢(a,b) = b. Then the compositions

X x?2 Y X and X 25 X2 2 x

are bijections.

The first map defines a binary operation, (a,b) — ab, and the inverse of
the second defines another, (a,b) — by. So the switch map, S: X? — X2,
is now defined by

S(a,by) = (b,ab).

The advantage of the suffix and superfix notation is that brackets can often
be dispensed with: so for example

at® = (a®)°, a¥ = a(%), ab, = (a°),, etc.

b

. are ambiguous and are not used.

On the other hand expressions such as a
The operations are right invertible. So there are inverse operations (a, b) —
a® " and (a,b) — a1 such that

—1 —1
" =a" P =a and ap-1 = ap-1, = a.

3. The Set Theoretic Yang—Baxter Property:
(S x id)(id x S)(S x id) = (id x S)(S x id)(id x S): X3 — X3,

The Yang—Baxter property implies the following equations among the op-
erations.
bC

ab® = a®" ey = cap, and b, = bge.

4. The Biquandle Property: In terms of the operations introduced earlier, this
is the property that

a® = a,

for all a € X.

In [46] and elsewhere there are slightly different conventions. The operations
are defined directly by the switch S. Suppose S(a,b) = (bV a,a Ab). Then the
operations V, A are defined in terms of the above as

bVa=by,1,aNb=al1.
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The advantage of the new operations is that the formulee involved in the Yang—
Baxter equations and the biquandle condition become much simpler.

The map, G: X? — X2, defined by G(a,b) = (b, a’) is called the sideways
map in [46]. The biquandle property says that G preserves the diagonal in X?2.

Knot and link invariants can be defined from the above axioms by a mix’n’match
choice. Conditions 1 and 2 are usually satisfied although Kauffman has shown
that the binary operations need only be right surjective. REFERENCE NEEDED

A biquandle satisfies all the axioms. A birack satisfies all the axioms except
the biquandle condition. Quandles and racks are the same except the binary
operation ap = a is trivial.

So if all the edges of a virtual diagram are labelled by a biquandle and satisfy

then we can obtain invariants of a virtual knot. Note that we can think of a square
around each crossing. The label on the square is +ab according to the labels on
the edges and the sign of the crossing.

The figures below give pictorial evidence of the invariance under the Reide-
meister moves. ?7777?7777777777777 Full details can be obtained in [45]. Many
examples of small size can be found in [6].

On the other hand if we are looking for invariants of a doodle then we would
not expect the Yang—Baxter condition to be satisfied.

Suppose R is an associative ring with a multiplicative identity, 1. If the set of
labels is an R-module, then the birack, biquandle, etc is called linear if there are
are elements A, B, C, D of R such that the switch map is defined by the 2 x 2

matrix
A B
5:<C D).

There are many examples of linear biquandles with R equal to the quaternions,
see for example [14, 15, 44].
Affine biquandles, generalizing linear ones need to be investigated. One such
is the Cheng labelling
S(z,y)=(y—1,z+1),

see [20].

6.2 Homology of biracks and biquandles

Let X be the labels of a birack. A word w = ay---a, of length n is called an
n-cube. For example a 1-cube is a label, a 2-cube is a crossing and a 3-cube is a
Reidemeister III move.
For each n-cube there are 2n faces of dimension n — 1,
ai_(al...an) = aq ...ai_lai+1...an

and

8Z.+(a1 cvan) = (a1)% - (ai—1)(aig1)a; -+ (an)a; fori=1,...,n
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A cubical cell complex, I'X, can be defined in the usual way by identifying all the
disjoint cubes having common faces. Properties of this complex can now be used
to define knot invariants. For example the fundamental group has a presentation

m(TX) = (z,y € X | zy, = ya¥).
Let C,, = C,(I'X) be the free abelian group with basis the n-cubes of I'X.
The homomorphism 9: C,, — C), is defined on cubes by

o =

)

n

(=1)"(8; - 9;")
=1
and extended linearly. The Yang—Baxter equations then imply that the compo-
sition

Cn — Cnfl — Cnfg

is zero, and so we have a chain complex. The homology of this chain complex
H,(C) and the homology of any subchain complex is therefore an invariant.

One important example is the degenerate subchain. A cube, ay - - - a,, is called
degenerate if a; = a;y1, for some ¢ = 1,...,n — 1. If the birack is a biquandle,
so a® = a, for all a, then the degenerate cubes generate a subchain, D,. The
quotient BQ, = C./D, defines the biquandle chain complex and the short exact
sequence

0—->D,—C,—BQ.—0

extends to a long exact homology sequence.
Another example is the double of a birack. Consider the set of pairs of pairs
X2 x X2 Then W C X2 x X? is the set of pairs of pairs defined by

W ={ac,bc|a,b,c,€ X, c* = cb}.
The doubled operations are
(ac)®) = abc, (b¢)(ac) = bac® and G (ac, be) = (bac”, abc®)

Doubling converts racks into biracks and quandles into biquandles.

The homology of the double of the 3-color quandle can be used to distinguish
the right and left trefoils, see [45].

Much work has been done on the homology of racks and quandles, see [16, 50,
51, 52, 53]. However the homology of biracks and biquandles is little understood
and needs investigating.

7 Graph-links

It turns out that some information about the knot can be obtained from a more
combinatorial data: the intersection graph of a Gauss diagram. The intersection

19



Figure 9: A Gauss diagram and its labeled intersection graph

Figure 10: Non-realizable Bouchet graphs

graph is a graph without loops and multiple edges, whose vertices are in one-
to-one correspondence with chords of the Gauss diagram. Two vertices of the
intersection graph are adjacent whenever the corresponding chords of the Gauss
diagram are linked (or intersect each other when they are placed inside ), see
Fig. 9. Each vertex of the intersection graph is endowed with the local writhe
number of the corresponding crossing.

However, sometimes a chord diagram can be obtained from the intersection
graph in a non-unique way, and some graphs (shown in Fig. 10) cannot be rep-
resented by chord diagrams at all.

Likewise virtual knots appear out of non-realizable chord diagram and thus
generalize classical knots (which have realizable chord diagrams), graphs-links
come out of intersection graphs: We may consider graphs which are realized by
chord diagrams, and, in turn, by virtual links, and pass to arbitrary simple graphs
which correspond to some mysterious objects generalizing links and virtual links.

Traldi and Zulli [210] constructed a self-contained theory of “non-realizable
knots” (the theory of looped interlacement graphs) possessing lots of interesting
knot theoretic properties by using Gauss diagrams. These objects are equivalence
classes of (decorated) graphs modulo “Reidemeister moves”.

In [68] it was suggested another way of looking at knots and links and gen-
eralizing them (the theory of graph-links): whence a Gauss diagram corresponds
to a transverse passage along a knot, one may consider a rotating circuit which
never goes straight and always turns right or left at a classical crossing. One can
also encode the type of smoothing (Kauffman’s A-smoothing or Kauffman’s B-
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5 :2-8,3-14,4-6,7-10, §( 1-12,5-9
11-13

Figure 11: Rotating circuit shown by a thick line; chord diagram

smoothing) corresponding to the crossing where the circuit turns right or left and
never goes straight, see Fig. 11. We note that chords of diagrams are naturally
split into two sets: those corresponding to crossings where two opposite direc-
tions correspond to emanating edges with respect to the circuit and the other
two correspond to incoming edges, and those where we have two consecutive
(opposite) edges one of which is incoming and the other one is emanating.

After the two theories were constructed, some questions arose. It was shown
that there are graphs not being Reidemeister equivalent (each theory has own
Reidemeister moves) to an intersection graph of a virtual knot diagram [74, 176].
The equivalence of the two theories (the theory of looped interlacement graphs
and the theory of graph-knots) was proved in [67]. Also, some invariants were
constructed, see [68, 69, 71, 74, 192, 210].

8 A List of Problems

8.1 Problems in and related with virtual knot theory

Below, we present a list of research problems closely connected with virtual knot
theory.

1. Recognising the Kishino Knot: There have been invented many ways to
recognize the Kishino virtual knot (from the unknot): The 3-strand Jones
polynomial, i.e. the Jones polynomial of the 3—strand cabling of the knot) [132],
the E—polynomial, see [155], the quaternionic biquandle [5], and the surface
bracket polynomial (Dye and Kauffman [35]). In [79] Kadokami proves the
knot is non-trivial by examining the immersion class of a shadow curve
in genus two. One can use the Manturov parity bracket to show that es-
sentially the flat Kishino diagram is its own invariant, exhibiting the non-
triviality of this knot. See [94] for an exposition of this proof. [VASSILY,
PLEASE ADD YOUR REFERENCES HERE!]
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Are we done with this knot? Perhaps not. Other proofs of its non-triviality
may be illuminating. The fact that the Kishino diagram is non-trivial
and yet a connected sum of trivial virtual knots suggests the question:
Classify when a non-trivial virtual knot can be the connected sum of two
trivial virtual knots. A key point here is that the connected sum of closed
virtual knots is not well defined and hence the different choices give some
interesting effects. With long virtual knots, the connected sum is ordered
but well-defined, and the last question is closely related to the question of
classifying the different long virtual knots whose closures are equivalent to
the unknot.

. Flat Virtuals: Flat virtual knots, also known as virtual strings [64, 211], are
difficult to classify. Find new combinatorial invariants of flat virtual knots.
We would like to know more about the flat biquandle algebra. This algebra
is isomorphic to the Weyl algebra [55] and has no (non-trivial) finite dimen-
sional representations. An example that goes beyond the usual restrictions
is the (very simple) affine biquandle used in [106] to construct the Affine
Index polynomial invariant of virtual knots. One can make small examples
of the flat biquandle algebra, that detect some flat linking beyond mod 2
linking numbers, but the absence of other finite dimensional representations
presents a problem.

. The Flat Hierarchy: The flat hierarchy is constructed for any ordinal ov. We
label flat crossings with members of this ordinal. In a flat third Reidemeister
move, a line with two a labels can slide across a crossing labeled b only if
a is greater than b. This generalizes the usual to theory of flat virtual
diagrams to a system with arbitrarily many different types of flat crossings.
Classify the diagrams in this hierarchy. This concept is due to Kauffman
(unpublished). A first step in working with the flat hierarchy can be found
in [167].

Virtuals and the Theory of Doodles: Compare flat theories of virtual knots
with theories of doodles. A doodle is represented by a flat diagram in the
plane. Reidemeister moves of type I and II are allowed but not type III.
So a triple point must not be allowed. Khovanov has associated a group to
doodles [126]. Commutator identities can also be associated to a doodle.
Cobordism of doodles is defined by an immersed surface without triple
points. Cobordism classes represent elements of a free abelian group. There
is undoubtably a rich seam of results which could be found by investigating
doodles. For example there is no reason not to have virtual crossings as
well as flat crossings. This would give doodles on a surface of higher genus,
see [43, 54, 126].

Virtual Three Manifolds: There is a theory of virtual 3-manifolds con-
structed as formal equivalence classes of virtual diagrams modulo general-
ized Kirby moves, see [36]. From this point of view, there are two equiva-
lences for ordinary 3—manifolds: homeomorphisms and virtual equivalence.
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Do these equivalences coincide? That is, given two ordinary three mani-
folds, presented by surgery on framed links K and L, suppose that K and
L are equivalent through the virtual Kirby calculus. Does this imply that
they are equivalent through the classical Kirby calculus?

What is a virtual 3-manifold?:. That is, give an interpretation of these
equivalence classes in the domain of geometric topology.

Construct another theory of virtual 3—manifolds by performing surgery on
links in thickened surfaces Sy X R considered up to stabilization. Will this
theory coincide to that proposed by Kauffman and Dye [36]7

[ADD FURTHER GEOM TOPOLOGY QUESTIONS]

. Welded Knots: We would like to understand welded knots [198]. It is
well known [85, 190] that if we admit forbidden moves to the virtual link
diagrams, each virtual knot can be transformed to the unknot. If we allow
only one forbidden move (e.g. the upper one), then there are lots of different
equivalence classes of knots. In fact the fundamental group and the quandle
of the virtual diagram are invariant under the upper forbidden move. The
resulting equivalence classes are called welded knots. Similarly, welded braids
were studied in [48], and every welded knot is the closure of a welded
braid. The question is to construct good invariants of welded knots and, if
possible, to classify them. In [198] a mapping is constructed from welded
knots to ambient isotopy classes of embeddings of tori (ribbon tori to be
exact) in four dimensional space, and it is proved that this mapping is
an isomorphism from the combinatorial fundamental group (in fact the
quandle) of the welded knot to the fundamental group of the complement
of the corresponding torus embedding in four-space. Is this Satoh mapping
faithful from equivalence classes of welded knots (links) to ambient isotopy
classes of ribbon torus embeddings in four-space?

[MENTION ROURKE PAPER|

. Long Knots and Long Flat Knots: Enlarge the long knot invariant struc-
ture proposed in [160]. Can one get new classical knot invariants from the
approach in this paper? Bring together the ideas from [160] with the bi-
quandle construction from [124] to obtain more powerful invariants of long
knots. Long flat virtual knots can be studied via a powerful remark due
to Turaev (in conversation) to the effect that one can associate to a given
long flat virtual knot diagram F' a descending diagram D(F') (by always
going over before going under in resolving the flat (non-virtual) crossings
in the diagram). The long virtual knot type of D(F') is an invariant of
the long flat knot F. This means that one can apply any other invariant I
of virtual knots that one likes to D(F') and I[D(F')] will be an invariant
of the long flat F. It is quite interesting to do sample calculations of such
invariants and this situation underlines the deeper problem of finding a full
classification of long flat knots.
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10.

11.

Bartholomew, Fenn, S. Kamada and N. Kamada have applied quaternion
invariants to long virtual knots, see [7].

[KAREN CHU: Karene Chu classifies long flats. Long flats embed in long
virtuals and so this leads to more questions.]

Virtual Biquandle: Construct presentations of the virtual biquandle with
the a linear (non-commutative) representation at classical crossings and
some interesting structure at virtual crossings. A start has been made by
Bartholomew and Fenn [6]. In this paper various biquandle decorations are
made at classical and virtual crossings which were found by a computer
search.

Virtual braids: Is there a birack such that its action on virtual braids is
faithful?

Is the invariant of virtual braids in [150], see also [3, 109, 162], faithful?

The action defined by linear biquandles is not faithful. This almost certainly
means that the corresponding linear invariants of virtual knots and links
are not faithful [44] (see also [6]).

The Fundamental Biquandle: Does the fundamental biquandle, see [124]
classify virtual links up to mirror images? (We know that the biquandle
has the same value on the orientation reversed mirror image where the
mirror stands perpendicular to the plane (see [64, 65]).

Are there good examples of weak biquandles which are not strong? [SOLVED.
GET REFERENCE ]

We would like to know more about the algebra with 2 generators A, B and
one relation [B, (A — 1)(A, B)] = 0 (see [14]). It is associated to the linear
case.

Virtualization and Unit Jones Polynomial: Suppose the knot K is classical
and not trivial. Suppose that K (obtained from K by virtualizing a subset
of its crossings) is not trivial and has a unit Jones polynomial, V(K) = 1.
Is it possible that K is classical (i.e. isotopic through virtual equivalence to
a classical knot)?

Suppose K is a virtual knot diagram with unit Jones polynomial. Is K
equivalent to a classical diagram via virtual equivalence plus crossing vir-
tualization? (Recall that by crossing virtualization, we mean flanking a
classical crossing by two virtual crossings. This operation does not affect
the value of the Jones polynomial.)

Given two classical knots K and K’, if K can be obtained from K’ by a
combination of crossing virtualization and virtual Reidemeister moves, then
is K classically equivalent to K'?

If the above two questions have affirmative answers, then the only classical
knot with unit Jones polynomial is the unknot.
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12.

13.

14.

15.

16.

Virtual Quandle Homology: Study virtual quandle homology in analogy to
quandle homology [17, 61].

Khovanov Homology: Construct a generalization of the Khovanov complex
for the case of virtual knots that will work for arbitrary virtual diagrams.
Investigate the Khovanov homology constructed in [162, 164]. The main
construction in this approach uses an orientable atom condition to give
a Khovanov homology over the integers for large classes of virtual links.
The import of our question, is to investigate this structure and to possibly
find a way to do Khovanov homology for all virtual knots over the ring
of integers. Similar questions can be raised for the presently evolving new
classes of Khovanov homology theories related to other quantum invariants
(cf. [117, 118]).

By a K-full virtual knot we mean a knot for which there exists a diagram
such that the leading (the lowest, or both) term comes from the B-state.
Analogously, one defines the Kho-full knot relative to the Khovanov invari-

ant. Call such diagrams optimal diagrams. (It is easy to find knots which
are neither K-full nor Kho-full.)

Classify all K-full (Kho-full) knots.

Are optimal diagrams always minimal with respect to the number of clas-
sical crossings?

Classify all diagram moves that preserve optimality.

Is it true that if a classical knot K has minimal classical diagram with n
crossings then any virtual diagram of K has at least n classical crossings?
Can any virtual knot have torsion in the B-state of the Khovanov homology
(the genuine leading term of some diagram)? Here we use the formulation
of Khovanov homology given in [162, 164].

The behaviour of the lowest and the leading term of the Kauffman bracket
for virtual knots was studied in [162] and [2] and [81].

Brauer algebra: The appropriate domain for the virtual recoupling theory
is to place the Jones—Wenzl projectors in the Brauer algebra. That is,
when we add virtual crossings to the Temperley—Lieb Algebra to obtain
“Virtual Temperley—Lieb Algebra” the result is the Brauer algebra of all
connections from n points to n points (see [114, 116]). What is the structure
of the projectors in this context? Can a useful algebraic generalization of
the classical recoupling theory be formulated?

Virtual Alternating Knots: Define and classify alternating virtual knots.
Find an analogue of the Tait flyping conjecture and prove it. Compare [219].

Classify all alternating weaves on surfaces (without stabilization).

Crossing Number: One of the most important problems in knot theory is
the problem of finding the minimal crossing number for a given knot. It
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17.

can be estimated by means of various invariants, the simplest one, perhaps,
being the Kauffman bracket estimate:

span(K) < 4n — 4g,

Here span stands for the difference between the leading degree and the
lowest degree non-zero terms in the Laurent polynomial defined by the
Kauffman bracket, n is the crossing number, ¢ is the atom genus for the
knot K (also called the Turaev genus).

In the case g = 0, we get the celebrated Murasugi-Kauffman—Thistlethwaite’s
theorem on minimality of alternating knot diagrams.

Is there is a way to prove that the atom genus g is minimal for a concrete
knot diagram? Then this together with a sharp estimate for the span of
the Kauffman bracket guarantees the minimality of the diagram.

The estimate 4n — 4g is exact for adequate diagrams (after Thistlethwaite).
It is exact for many diagrams which are not adequate however: there are
lots of minimal diagrams where the span of the Kauffman bracket “drops
down”, for example, for torus (p,q) knots for p > ¢ > 2.

Why is the span of the Kauffman bracket smaller than expected for such
classes of knots?

One of possible explanations may be that the projection surface is wrongly
chosen. For a torus knot, it is more convenient to consider it as being
projected to the torus with no crossing points rather than to the plane
with many crossing points. Thus the following problem arises: How do we
use the Kauffman bracket , Thistlethwaite spanning tree, atoms and other
invariants to get estimates for the number of crossings when projecting the
knot diagram not to the plane but rather to some surfaces of higher genera?

Certainly, when applying smoothing on the plane we get the final expansion
of the Kauffman bracket as a linear combination of the bracket for the
unknot; we shall get expression in terms of the bracket of some “basic”
torus knots, which makes the problem harder. ?? What does this mean??

Can we get estimates from Thistlethwaite’s spanning tree and/or from the
Khovanov homology?

Which minimality theorems can be proved in this direction?

Is it possible to get an estimate for the atom genus when the atom is con-
sidered not in the neighborhood of the plane but rather in a neighborhood
of the surface the knot is projected to and the thickness of the Khovanov
homology does not exceed 2 + g?

Crossing number problems: For each virtual link L, there are three crossing
numbers: the minimal number C of classical crossings, the minimal number
V' of virtual crossings, and the minimal total number T' of crossings for
representatives of L. There are also a number of unknotting numbers: The
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18.

19.

20.

21.

classical unknotting number is the number of crossing switches needed to
unknot the knot (using any diagram for the knot). The virtual unknotting
number is the number of crossings one needs to convert from classical to
virtual (by direct flattening) in order to unknot the knot (using any virtual
diagram for the knot). Very little is known. Find out more about the
virtual unknotting number.

What is the relationship between the least number of virtual crossings and
the least genus in a surface representation of the virtual knot.

Is it true that T =V + L?

Is there any algorithm for finding V' for some class of virtual knots. For
T, this is partially done for two classes of links: quasialternating and some
other, see [152]. For classical links and alternating diagrams see [187, 189].

Are there some (non-trivial) upper and lower bounds for T, V, L coming
from virtual knot polynomials (see [141])7

Wild Virtuals: Create the category of “wild virtual knots” and establish
its axiomatics. In particular, one needs a theorem that states when a wild
equivalence of tame virtual links implies a tame equivalence of these links.

Vassiliev Invariants: Understand the connection between virtual knot poly-
nomials and the Vassiliev knot invariants of virtual knots (in Kauffman’s
sense). Some of that was done in [60, 93, 166, 200].

The key question about this collection of invariants is this: Does every
Vassiliev invariant of finite type, for classical knots extend to an invariant
of finite type for long virtual knots? Here we mean the problem in the sense
of the formulation given in [60]. In [93] it was pointed out that there is a
natural notion of Vassiliev invariants for virtual knots that has a different
notion of finite type from that given in [60]. This alternate formulation
needs further investigation.

Embeddings of Surfaces: Given a non-trivial virtual knot K. Prove that
there exists a minimal realization of K in N = S, x I and an unknotted
embedding of N C R3 such that the obtained classical knot in R? is not
trivial. (This problem is partially solved by Dye in [32].

Non-Commutativity and Long Knots: It is known that any classical long
knot commutes with any long knot. This is definitely not the case in the
virtual category, see paper by Kamadas, Fenn et al. However the commu-
tativity of classical long knots may be incorporated into the commutativity
of virtual knots if the following question is true. Is it true that if K and K’
are long knots and K# K’ is isotopic to K'#K then there exists a virtual
long knot L, classical long knots @, @', and non-negative integer numbers
m,n such that
K =L"#Q, K =L"#Q,

where by L™ we mean the connected sum of m copies of the same knot?
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22.

23.

24.

25.

The Rack Space: The rack space was invented by Fenn, Rourke and Sander-
son [42, 50, 51, 53]. The homology of the rack space has been considered by
the above authors and Carter, Kamada, Saito [17]. For low dimensions, the
homology has the following interesting interpretations. Two dimensional
cycles are represented by virtual link diagrams consistently colored by the
rack, and three dimensional cycles by the same but with the regions also
colored. See the thesis of Greene [61]. So virtual links can give, in this way,
information about classical knots! For the second homology of the dihedral
rack, the results are given in Greene’s thesis. We now know that for a prime
p the third homology has a factor Z,. [GIVE REFERENCE]

Another line of enquiry is to look at properties of the birack space [50] and
associated homology.

Beyond problem number 22 we list new problems that are added to this
revised problem list.

Find new geometric/topological interpretations for the Jones polynomial
and for Khovanov homology.

Let VKT/Z denote virtual knot theory modulo Z-equivalence, as defined in
the section above on virtual knot theory. Recall that two virtual diagrams
that are Z-equivalent have the same Jones polynomial. It is known that
classical knot theory embeds in virtual knot theory. Does classical knot
theory embed in VKT/Z? That is, suppose that K and K’ are classical
knot diagrams, and suppose that K and K’ are equivalent using virtual
moves and Z-moves. Does it follow that K and K' are equivalent as classical
knots?

Rotational virtual knot theory introduced in [93] is virtual knot theory
without the first virtual move (thus one does not allow the addition or
deletion of a virtual curl). This version of virtual knot theory is significant
because all quantum link invariants originally defined for classical links
extend to rotational virtual knot theory. This theory has begun to be ex-
plored [93, 108, 112] and deserves further exploration. We have formulated
a version of the bracket polynomial for rotational virtuals that assigns vari-
ables according to the absolute value of the Whitney degree of state curves.
See Figure 12 for examples of non-trivial rotational virtual links.

The rotational bracket can be generalised in the fashion of the Arrow Poly-
nomial. Beyond this there are all the quantum link invariants and how
they behave on rotational virtuals. We are in the process of writing a
new paper on rotational virtual knot theory. A natural class of invariants
for rotational virtuals arises as quantum invariants associated with finite
dimensional quasi-triangular Hopf algebras. This harks back to an early
project [121, 122, 123, 124] that needs further articulation. In that work
with Radford we articulate invariants that immediately generalize to invari-
ants of rotational virtual knots. These invariants are defined via integrals on
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27.
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29.

5 ¢

Figure 12: Examples of non-trivial rotational links

finite dimensional Hopf algebras and should be studied for their own sake.
We would also like to know about the possibility of categorification of finite
dimensional Hopf algebras and, in particular, the meaning of categorifying
a right integral.

The arrow polynomial generalizes to a more powerful invariant of virtual
knots by defining a version of it for knots in specific thickened surfaces. The
arrow polynomial for a knot in a thickened surface has state variables that
take into account the isotopy class of the state curve and its arrow number
as well. This gives a very strong invariant of knots in thickened surfaces and
it can be applied to virtual knots by using a minimal surface representative
for the virtual knot. Investigating this surface arrow invariant generalizes
previous work on the surface bracket polynomial [35].

Study concordance and cobordism invariants of virtual knots. In particu-
lar, solve the question of virtual knots up to pass-equivalence [86] (taking
a direct generalization of classical pass equivalence that gives the Arf in-
variant of knots). Understanding this specific problem will promote our
understanding of concordance of virtual knots.

Biquandles: The first two problems are old chestnuts.

Give a descriptive representation of the free biquandle.

Give a topological explanation of the fundamental biquandle of a knot.

Is there such a thing as a free partial biquandle: probably not.

Khovanov homology for virtual knots and links works directly with mod-
2 coefficients. With mod-2 coefficients there are no technical difficulties
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30.

31.

32.
33.

34.

35.

associated with the fact that a virtual state curve can resmooth to a
single curve. Over the integers, this is a problem that has to be dealt
with. An integral Khovanov homology for virtual knots has been con-
structed by Manturov [169]. It is also the case that the work of Khovanov—
Rozansky [130, 131] categorifiying infinitely many specializations of the
Homflypt polynomial is an integral invariant for virtual knots. In princi-
ple, the Khovanov—Rozansky work solves the problem of integral Khovanov
homology for virtuals, but to see this in terms of Khovanov’s original def-
inition is a very good technical problem. Solve this problem to clarify the
Manturov construction.

In [39, 80] we have studied a mod-2 categorification of the arrow polynomial
and discovered many baffling examples of pairs of virtual knots that are
discriminated by this link homology and not distinguished by Khovanov
homology mod-2 or the arrow polynomial. We want to understand this
new link homology and to that end will do more computations and will try
to understand the structure of this homology theory for virtual links.

Make a systematic study of Vassiliev invariants for virtual knots and links.
There is ongoing work on this problem.

Generalize virtual knot theory to virtual 2-spheres in 4-space.

Find a way to effectively compute the Kauffman—Radford—Hennings (KRH)
invariants [121] for three-manifolds via right integrals on finite dimensional
Hopf algebras [92]. Find a way to categorify the Kauffman—Radford—
Hennings invariants for all finite dimensional quasitriangular Hopf algebras.
The KRH invariants are actually invariants of rotational virtual links that
are also, after normalization, invariant under the moves of the Kirby calcu-
lus. In this way, they give invariants of three manifolds and virtual three
manifolds. The formulation of the KRH invariants in terms of integrals
for finite dimensional Hopf algebras is very elegant, but computation is
very difficult. Thus these invariants form a challenge for both virtual and
classical knot theory. It is worth pointing out again, that the proper do-
main for all quantum link invariants is rotational virtual knot theory. Thus,
this problem about the KRH invariants is a test case for the structure of
quantum link invariants as a whole.

Create a combinatorial homotopy theory for Khovanov homology so that
the Khovanov homology of a knot or link is equivalent to the homotopy type
of an abstract complex (or category) associated with the knot of link. This
problem is meant in the sprit of Bar-Natan’s reformulation of Khovanov ho-
mology as an abstract chain homotopy class of a categorical chain complex
associated with the knot or link. Recent work of Lifshitz and Sarkar [142]
goes very far in this direction. Of course we would like a deeper connection,
and we would like to have the theory working for virtual knots and links.

In [90] we give a formula for the Kauffman polynomial, due to Jaeger, that
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expresses this invariant as a state sum over oriented, partially smoothed
links associated with the given link. these states are evaluated by using
the Homfly polynomial. Generalize the Jaeger point of view to obtain a
categorification of the Kauffman polynomial by using chain complexes for
these states that are derived from the Khovanov—Rozansky categorification
of the Homflypt polynomial.

In [90, 95] we show how, by translating between knots and planar graphs
(the checkerboard and medial constructions) one can associate a signed
graph to a classical knot and that, with a choice of nodes and an interpre-
tation of the signs as generalized electrical conductance, the conductance
between two nodes of the graph is an invariant of isotopy of the knot re-
stricted to move in the complement of these nodes. The moves on the
graphs involve replacements of pedant loops and edges, series and paral-
lel replacements and a star—triangle exchange move. These moves can be
applied to abstract (possibly non-planar) graphs. As a result we obtain
a generalization of knot theory (similar in spirit but quite different from
virtual knot theory) by taking the electrical equivalence classes of signed
graphs. Call this theory EG.. The conductance remains an invariant of
these FElectric-Knots and shows that the theory is highly non-trivial. This
formulation of Electric Knots gives rise to many problems. Find new in-
variants of Graph-Knots. Note that if we take a planar immersion of a
signed graph, then the induced cyclic orders of edges at the nodes of the
planar embedding give a natural way (analogous to the medial graph) to as-
sociate a virtual knot diagram to the immersion. Explore this relationship
of Electric Knots and virtual knots.

It has been pointed out that the chain complex for Knot Floer Homol-
ogy [195] (categorifying the Alexander—Conway polynomial) is generated
by the states described in Formal Knot Theory [86]. These states involve
an assignment of pointers to each region of the diagram (with two adja-
cent regions omitted) such that each pointer marks a unique crossing in
the diagram. The key problem about this complex is that while the chain
groups are described via knot diagram combinatorics, the differential in the
complex seem to require high dimensional contact geometry. Even though
there is now a combinatorial definition of Knot Floer homology via arc di-
agrams, this is an unsatisfactory state of affairs. The problem is to find a
combinatorial definition of the differential on the complex generated by the
Formal Knot Theory states.

The Kauffman bracket polynomial of a virtual diagram can have the leading
term, i.e., the term having the highest possible degree, equal to zero.
Assume that we have a diagram for which the Kauffman bracket polyno-
mial has the nonzero leading term. Classify moves (compositions of the
generalized Reidemeister moves) establishing the equivalence in the class of
diagrams with nonzero leading terms.
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We still do not know whether the free knot whose Gauss diagram is a
heptagon (i.e. consists of 7 chords each of which is linked with precisely two
adjacent ones) is trivial.

Given a chord diagram D we can construct the following formal chain com-
plex. Formally speaking, this complex will look like a simplicial complex
in all dimensions except zero, but one can get rid of this by using duality
arguments.

In dimension —1 there is just one chain denoted by @. In dimension 0,
the chains are in one-to-one correspondence with unoriented chords of the
diagram D; in dimension 1 the chains are in one-to-one correspondence
with pairs of unlinked chords, for dimension 2 we take triples of pairwise
unlinked chords, etc.

The differential acts on the k-tuple, {a1, ..., a;} of pairwise unlinked chords
to the (k + 1)-tuple {a1,...,ax,a;} obtained by the addition of a chord
unlinked with all the previous ones. The sign is taken in a standard way to
make the complex well-defined with integral coefficients. Such a complex
is naturally defined by the intersection graph of the chord diagram.

Example 8.1. Let the chord diagram consist of 2n chords, where the the
following pairs of chords are linked: (1,2), (3,4), (5,6),...,(2n — 1,2n).
Then the corresponding simplicial complex is the (n — 1)-sphere (the n-th
join of SY.

Can we get any other simplicial complexes this way other than just bou-
quets of spheres? An affirmative answer to this question may lead to some
homological calculations which are very easy for computer implementation.
This problem was motivated several years ago by an attempt to construct
the spectrification of the Khovanov homology. It turns out that if some
(virtual) knot in the A-state has exactly one circle then its Khovanov ho-
mology in the lowest quantum grading looks exactly as described above.
Thus, this approach may be useful for understanding the Khovanov homol-
ogy of chord diagrams as well as some other approaches to the Khovanov
homology spectrification obtained by recent work with Lipshitz.

On the other hand, this problem is motivated the construction of graph-link
theory. Indeed, every triangulated manifold admits a shallow triangulation
such that together with any 1-frame of a k-simplex, it contains the whole
simplex.

Considering the one-dimensional frame of such a triangulation as the non-
intersection graph of some chord diagrams, we get exactly the chord di-
agram, whose lower term Khovanov homology looks as described above.
The problem is that not every graph is an intersection graph (neither any
graph is a non-intersection graph) of any chord diagram. This leads to the
graph-link theory for which all possible manifolds appear in the lower de-
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gree homology theory. This leads to some lower homotopy of graph links.
The next problem can be formulated as follows.

Given two diagrams of (virtual) knots or links with exactly one circle in
the A-state. Which combinations of Reidemeister moves on the diagrams
have to be be considered in such a way that whenever two diagrams gen-
erate equivalent knots, there exists a chain of moves from one diagram to
the other with all intermediate diagrams having single-circle A-state and
such that chord diagram homology (and homotopy) corresponding to those
intermediate diagrams do not change under such moves?

It is worth comparing these thoughts with the recent work of Lipschitz on
the spectrification of Khovanov homology. Possibly, the Bloom—Nikonov [11,
192, 193] approach to Khovanov homology [194, 195] can be used here.

Which quantum invariants extend to virtual knots themselves without re-
strictions? Certainly, there are such ones, e.g., the Kauffman bracket and
the Jones polynomial.

One can consider braids with even numbers of strands. Markov’s moves
change the parity of the number of strands. Can one reformulate Markov’s
theorem in such a way that only braids with even numbers of strands take
part in this formulation?

In his wonderful paper [197], which firstly had the title “Knot Floer Ho-
motopy”, Sarkar constructs a cell complex. The homology of this complex
coincides with the Floer homology. In this work the following main in-
gredients are used: Manolescu—Ozsvath—Sarkar—Szab6—Thurston approach
allowing one to define Heegaard—Floer homology by using grid diagrams
and shellability. Roughly speaking, if complexes look like order complexes,
then they can be replaced with cell (simplicial) complexes homotopically
equivalent to them.

Try to do the same things for Khovanov homology. In the initial Khovanov
definition this problem seems to be very difficult, since the set of chains
and states can hard be ordered. However, taking into account Bloom’s
construction [11] this problem looks more optimistic.

A complete invariant is used for proving that one theory is a part of another
theory. For example, the fact that the set of classical knots is a part of the
set of virtual knots, is true for the same reason as a quandle with peripheral
structure can be extended from classical knots into virtual knots. Analogous
statements can be done for classical and virtual braids (the extension of
Hurwitz’s action).

So, we get an actual problem: how can one construct a complete invariant
for virtual knots?

To prove that the invariant F constructed by V.O. Manturov for virtual
braids, is complete for virtual braids with more than two strands.
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In [184] it was showed how one could determine non-invertibility of long
virtual knots and non-commutativity of long virtual knots. This method
used two type crossings: an early undercrossing and an early overcrossing.
Further, for two types we have different operations, these operations are
similar but not coincide (these operations are related to quandles). Re-
gretfully, this method gives nearly nothing for classical knots. But it is
universal: instead of the construction of quandle with two operations one
can consider other ways of constructing knot invariants. In these ways we
partition the set of crossings into two subsets, and for each subset we use an
operation. Moreover, two operations are different enough to determine non-
invertibility, and in the same time are similar to give an invariant structure.
In the level of the Kauffman bracket polynomial this construction does not
work. We get two problems.

(a) Try to do the same for other objects than quandles, for example: non-
linear quandles, quandles with rings having non-unique decomposition
of multiples.

(b) Try to apply it on a “categorified level”: use the usual chain space for
Khovanov homology and in it two different differentials but commute
with each other (these differentials correspond to circle and star op-
erations). These two different differentials could arise from usual and
odd Khovanov homologies in the case when we have an identification
(but maybe not canonical) between chain spaces of these complexes.
It is expected that these invariants could recognize non-invertibility of
knots.

It is well known that flat virtual knots are easily algorithmically recogniz-
able, see [63]. The absence of a geometric approach to the definition of
free knots leads to the lack of the methods for solving the following three
problems.

(a) Is it true that (any) connected sum of free knots is trivial?

(b) Are free knots algorithmically recognizable?

(c) Prove that free knots do not commute in the general case.

In the first case we suggest that the answer is affirmative, and the proof
should be a certain modification of the analogous proof for virtual knots
(see, e.g., [137])

In the second case we suggest that the answer is negative. It seems to

us that free knots are a very complicated object, where one can construct
models for many logical constructions.

The third problem seems to be solvable by using (and, possibly, extending)
standard methods in the free knot theory.

The functorial mapping was constructed, by means of it we constructed the
map from the set of virtual knots to the set of virtual knots with orientable
atoms.
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Can one construct an analogous map which projects the set of virtual knots
to the set of classical knots? For example, one can try to find an index by
using characteristic classes. Here only one condition which arises under the
third Reidemeister move should hold.

Note that in the case of homologically trivial knots we can consider a two-
branched covering like a projection.

Turaev constructed the map from the set of long flat knots to the set of
long virtual knots. Can one construct any map from the set of long free
knots to the set of long virtual knots? This question can be extended and
one can try to construct any map which “enlarge” the structure.

The problem about cobordisms in sections: Let us have a free knot and its
cobordism. Construct a parity on the given free knot, which is defined by
using only this cobordism and respect only moves inside this cobordism.

Prove or disprove the conjecture about the non-uniqueness of minimal rep-
resentative of a free link, i.e. there exists a free link having several minimal
representatives.

If X is the free rack, is I'X a cat(0) space? A positive answer would imply
that all its higher homotopy groups are trivial.

[ASK QUESTIONS ABOUT VIRTUAL KNOTS]

Is there any algorithm for recognition whether two graph-links are equiva-
lent or not? Our conjecture is “no”. The idea behind that is that graph-
links are complicated enough, and possibly, they contain sufficiently many
degrees of freedom to include something like Turing machines. All mathe-
matics is roughly split into the recognizable one (low-dimensional topology,
hyperbolic groups, decidability) and the non-recognizable one (topology
of dimension 4 and higher, arbitrary finitely presentable groups, Turing
machines etc). The usual argument for undecidability for finitely pre-
sented group allows one to construct some universal (semi)groups which
includes the apparatus of the Turing machines. We think that graph-links
are enough complicated to include similar things: they contain arbitrary
graphs, and Reidemeister moves, in principle, could play the role of “rules
for formal languages” or “group relations”. It seems unlikely that Reide-
meister moves collapse graph-links to anything simple enough because of
the parity considerations: there are “irreducibly odd” graph-links which are
stable in the sense that every equivalent graph contains the initial graph as
a subgraph.

Can one construct a projection from the set of graph-links to the set of
realizable graph-links?

Construct a parity on graph-links by using Bouchet’s criterion about the
realizability of a graph. Try to find a parity which is responsible for the
cyclically 6-edge connection, see [12].
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Figure 13: The Reeb graph corresponding a cobordism of genus one
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Construct generalizations of the Frobenius extension [128] and the Ras-
mussen for “rigid” graph-links with orientable atoms.

Is it true that two equivalent realizable graph-links are equivalent in the
class of realizable graph-links? If it is not true, then construct an example.

Construct a group for graph-links which is analogous to the group from [184,
Subsection 8.9].

Construct “graph-braids”.

Problems on Free Knot Cobordism: The methods used for proving the fact
that the invariant L [73] gives an obstruction to the sliceness are not im-
mediately generalized for obtaining lower estimates on the slice genus of
free knots. Two reasons are as follows. First, when we define a parity and
justified parity for double lines on D, we chose an arbitrary curve connect-
ing the two preimages of the point on the double curve. We assert that
any two curves connecting these two preimages (and behaving correctly in
neighborhoods of the ends) are homotopic. It is true in the case of cobor-
dism of genus zero, but in the case of a surface of an arbitrary genus h it
is, indeed, not true.

Thus, in order to define a parity for double lines we have to impose some
restrictions on the spanning surface: we have to require that the cohomology
class dual to the graph ¥ was Zs—homologically trivial. The significance of
the property for even-valent graphs to be Zo—homologically trivial is closely
connected with atoms (for details see [176]).

Another problem is that the Reeb graph of an arbitrary Morse function (not
necessarily corresponding to the disc) is not necessarily a disc. Consider
Fig. 13.

Thus, starting from a free knot K for which, we say, L(K) = 8, we (in
principle) can turn it by a Morse bifurcation into free two-component link
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consisting of two free knots K; and Ko, for which L(K;) = 4,and then
by another Morse bifurcation we can reconstruct this trivial link into the
unknot. The invariant L is not an obstruction to this, since the sum of 4
and —4 is zero.

In some cases we can overcome these two difficulties for cobordisms (of
arbitrary genus).

Let D, be a surface with boundary S'. Obviously, the collection of dou-
ble lines of D, defines a relative Zs-homology class k € Hj (Dg,Sl;Zg).
This homology class is an obstruction for the surface to be checkerboard-
colorable; also, this is an obstruction for well-definedness of even/odd dou-
ble lines.

Namely, if we look at the definition of an even/odd double line: we see that
there is an ambiguity in the choice of path connecting two preimages of
a generic point on the double line. For the case of a disc cobordism, the
parity of double lines is well defined, because all such curves are homotopic.
For D, the unique obstruction to this well-definedness is the class .

We call a cobordism of genus g checkerboard (or atomic) if the corresponding
class x vanishes.

The next task (after detecting which 1-stratum is even and which one is
odd) is to distinguish between b and b’. To this end, one should do the same
for preimages of points lying on odd 1-strata, connect them by a generic
curve, and count the intersection with even double lines. So, we see that
the only obstruction is the relative Zo-homology class ' € Hi(Dy, S%; Zs)
generated by even double lines.

We say that a checkerboard cobordism is 2-atomic if " vanishes.

The following theorem holds.

Theorem 8.1 (see [178]). Assume for a 1-component framed 4-graph K
we have L(K) # 0. Then there is no 2-atomic cobordism spanning the knot
K of any genus.

In the papers [143, 144] the fourth author constructed a strengthening G,
of the group G given in the present work (in the notation [143] our group
G is G1) and the invariants of free knots with values in the classes of
conjugate elements from G,,,. The idea is as follows. Even chords are further
partitioned into chords of different types, it leads to more accurate definition
of generators and relations in the group; these constructions are closely
connected with iterated parities and the map deleting odd crossings. It
seems that all invariants related to the groups G, also give an obstruction to
the sliceness of a knot. Moreover, in the paper [183] the author constructed
invariants of wirtual knots in which the over/undercrossing structure was
taken into account besides the parity of chords. We devote a separate paper
to the investigation of a connection of these invariants with cobordisms.
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Figure 14: Saddles, births and deaths

8.2 Problems on virtual knot cobordism

The material in this section will appear in [108, 34] and there have been studies
of virtual knot cobordism at the free knot level by Manturov [178, 179, 181].

Definition 8.1. Two oriented knots or links K and K’ are virtually cobordant
if one may be obtained from the other by a sequence of virtual isotopies (Reide-
meister moves plus detour moves) plus births, deaths and oriented saddle points,
as illustrated in Fig. 14. A birth is the introduction into the diagram of an iso-
lated unknotted circle. A death is the removal from the diagram of an isolated
unknotted circle. A saddle point move results from bringing oppositely oriented
arcs into proximity and resmoothing the resulting site to obtain two new oppo-
sitely oriented arcs. See the Figure for an illustration of the process. Fig. 14 also
illustrates the schema of surfaces that are generated by cobordism process. These
are abstract surfaces with well defined genus in terms of the sequence of steps in
the cobordism. In the Figure we illustrate two examples of genus zero, and one
example of genus 1. We say that a cobordism has genus g if its schema has that
genus. Two knots are cocordant if there is a cobordism of genus zero connecting
them. A virtual knot is said to be a slice knot if it is virtually concordant to
the unknot, or equivalently if it is virtually concordant to the empty knot (The
unknot is concordant to the empty knot via one death.). This definition is based
on the analogy of virtual knot theory and classical knot theory. It should be
compared with [213] in the category of virtual strings.

In Fig. 15 we illustrate the wirtual stevedore’s knot, VS and show that it
is a slice knot in the sense of the above definition. We will use this example
to illustrate our theory of virtual knot cobordism, and the questions that we
are investigating. We define a virtual knot to be a ribbon virtual knot if it is
slice via only deaths and saddle point transformations. We do not know at this
point whether there are virtual slice knots that are not ribbon. With the same
definitions restricted to classical knots, this is a long-standing open problem for
classical knot theory.
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Figure 15: Virtual stevedore is slice

We first point out that the virtual stevedore (V'.S) is an example that illus-
trates the viability of this theory. We can prove that VS is not classical by
showing that it is represented on a surface of genus one and no smaller. The
technique for this is to use the bracket expansion on a toral representative of
V'S and examine the structure of the state loops on that surface (see Fig. 16).
Note that in this Figure the virtual crossings correspond to parts of the diagram
that loop around the torus, and do not weave on the surface of the torus. An
analysis of the homology classes of the state loops shows that the knot cannot
be isotoped off the handle structure of the torus.

Next we examine the bracket polynomial of the virtual stevedore, and show
as in Fig. 17 that it has the same bracket polynomial as the classical figure eight
knot. The technique for showing this is to use the basic bracket identity for a
crossing flanked by virtual crossings as discussed in the previous section. This
calculation shows that V'S is not a connected sum of two virtual knots. Thus we
know that V'S is a non-trivial example of a virtual slice knot, an example that
constitutes proof in principle that this project is viable. We will face the problem
of the classification of virtual knots up to concordance.

8.2.1 Virtual surfaces in four-space

We now define a theory of virtual surfaces in four-space that is given by moves
on planar diagrams. One of the projects of this proposal is to investigate the re-
lationships between this diagrammatic definition and more geometric approaches
to virtual 2-knots due to Jonathan Schneider and to Takeda [207] (see also[206]).
One should also compare with the relationships to surfaces in four space for
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The knot VS has bracket polynomial equal to the
bracket polynomial of the classical figure eight
knot diagram E. This implies that VS is not a
connected sum.

<VS>=<I>=<E>=A

Figure 17: Bracket polynomial of the virtual stevedore
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Figure 18: Middle Level Markers

welded knots due to Satoh [198]. We make diagrammatic definitions as follows:
We use middle level markers as indicated in Fig. 18 to encode two directions of
smoothing a marked crossing in a planar diagram. The classical interpretation
of such a marker is that it represents a cobordism through a saddle point at the
middle level (¢ = 0 in the Figure) where the forms of smoothing above (¢ = 1)
and below (¢ = —1) are shown via the conventions in the Figure. A diagram with
markers can then be interpreted as two cobordisms attached at the middle. One
cobordism goes downward to a collection of possibly linked and knotted loops,
the other goes upward to another collection of linked and knotted loops. We will
refer to these as the up-cobordism and the down-cobordism. A marked diagram
is said to be excellent if both the up and the down cobordisms end in collections
of unlinked circles that can be capped off with births (from the bottom) and
deaths (at the top). The resulting schema is then a two-sphere and classically
represents a two-sphere in four space. We take exactly this definition for a virtual
two-sphere where it is understood that the ends of the two cobordisms will be
trivial virtual links.

Just as in classical theory, if a virtual knot is slice, then we can make a virtual
two-sphere from it by using the same cobordism both up and down. Births for
the original cobordism have to be represented directly in the middle level. The
slicing example for V'S, the virtual stevedore’s knot, can be made into a two-
sphere this way. We show the middle level diagram for this sphere, called S in
Fig. 19. In this same figure, we show another middle level diagram for a virtual
two-sphere S’. In this case we have used the fact (the reader can verify) that
V'S can be sliced from its right-hand side. The sphere S’ is obtained by slicing
upward from the left and downward from the right.

We give moves on the middle level diagrams to define isotopy of the virtual
two-spheres obtained from the middle level diagrams. The moves are indicated
in Fig. 20. They are a virtual generalization of the Yoshikawa moves that have
been studied [140, 206] for isotopies of the classical middle level formulations.
Thus we say the two two-spheres are isotopic if one can be obtained from the
other via these Generalized Yoshikawa moves. In particular, the fundamental
group of the two-sphere,defined by adding relations at saddle points exactly as
in the classical case (but from the virtual knot theoretic fundamental group) is

41



FundGrp(S) = FundGrp(VS) FundGrp(S') = Z.

Figure 19: Two Two-Spheres

an isotopy invariant. For example, in Fig. 21 we calculate the fundamental group
of VS and find that, in it the arcs whose elements must be identified to obtain
the fundamental group of the sphere S of Fig. 19 are already identified in the
fundamental group of V'.S. Thus we find that the sphere S is knotted since it has
the same non-trivial fundamental group as V.S. On the other hand, it is not hard
to see that the fundamental group of the sphere S’ is isomorphic to the integers.
At this writing we do not know if this sphere is virtually unknotted.

The generalized Yoshikawa moves present a useful first formulation for a the-
ory of virtual surfaces. One of the advantages of this approach is that we can
adapt the generalization of the bracket polyomial of Sang Youl Lee [140] to obtain
a bracket invariant for virtual two-spheres. This will be an important subject of
investigation for this proposal. We want to know how this diagrammatic formula-
tion is related to immersions of surfaces in four space that could represent virtual
two-knots. In this case the levels (movie of a cobordism) description that we have
adopted gives such an immersion, and one can begin the investigation at that
point. For these reasons, we believe that this formulation of virtual cobordism
and virtual surfaces will be very fruitful and lead to many new results.

8.2.2 Virtual Khovanov homology

Khovanov homology [127] (see also [8, 10, 104, 105, 137, 139, 188, 214, 216]) for
classical knots works, with mod-2 coefficients, for virtual knots. It has been gen-
eralized by Manturov [169, 184] for a homology theory with integer coefficients.
We have a new formulation of Manturov’s construction that simplifies some of
the choices in constructing the chain complex. We hope to see new results from
this technology. In particular we are examining the structure of the Rasmussen
invariant [196] with an eye to generalizing it in this framework. Using the notions
of cobordism given here, we can define the virtual four genus of a virtual knot
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Figure 20: Middle Level Moves
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Figure 21: Fundamental Group of VS
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as the least cobordism genus that it can attain. Thus slice knots have genus
zero and others will have higher genus in this sense. The Rasmussen invariant
gives a lower bound on the 4-ball genus of classical knots. One can and we are
investigating a similar lower bound for the virtual four genus.

8.2.3 Band-passing and other problems

The Arf invariant of a classical knot can be interpreted as the pass-class of the
knot, where two knots are pass equivalent [88] if one can be obtained from the
other by ambient isotopy combined with switching pairs of oppositely oriented
pairs of parallel strands. The pass-class is a concordance invariant of classical
knots and closely related to the Alexander polynomial. We would like to de-
termine the pass-classes of virtual knots. This problem appears difficult at this
time due the lack of invariants of the passing operation. We can obtain partial
results by restricting passing to only odd crossings (then the Manturov parity
bracket described in this proposal is an invariant of odd passing) but this is only a
step on the way to understanding the pass equivalence relation for virtual knots.
We expect that understanding this relation will shed light on problems of knot
concordance.

We cannot resist ending this collection of problems with a very classical prob-
lem in skein theory. It is well-known that the Alexander polynomial of a slice
knot is of the form f(¢)f(1/t) up to powers of ¢ and a sign. The problem is
to give a proof of this result using only Conway skein theory. This problem has
resisted us for a long time, and its resolution would surely shed light on problems
of knot cobordism classical and virtual.

8.3 Questions from V. Bardakov

The wvirtual braid group V B,, is defined by the generators o1, o2, ...,0,—-1 which
are generate the braid group B, and the generators pi, p2,...,pn—1 which are
generate the symmetric group S, also the following mixed relations hold

TiPi+1Pi = Pi+1Pi0i+1, t=1,2,...,n—12;

oipj = pjoi, |i—jl > 1.

1. The group G is called linear if there is an embedding of GG into the linear
group GL,, (k) for some natural m and a field k.
Is it true that V B,, is linear for all n > 37
It is true for n = 3 (unpublished result of V. Bardakov and P. Bellingeri).

2. Let F,41 = (z1,22,...,2,,y) be a free group of rank n + 1. There is a
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representation p: VB, — Aut(F,4+1):

-1 -1
Ti > TiTi+1%; T = YTi41y -,
-1
o Tit1 — Ti, i : Tit1 VY Ty,
) ap e ay, ) ap e ay,
Yy—y, Yy—y,

where k # i, i + 1. This representation is an extension of the Artin repre-
sentation pa: B, — Aut(F),) which is faithful, i.e. ker(pa) = 1.
Is the representation p faithful for all n > 27

3. The virtual knot theory is a subtheory of the welded knot theory? The
welded braid group W B,, is the quotient of the virtual braid group V B,
by the relations

Pi0i+10; = 0i+10iPi+1, t=1,2,...,n—2.

The group W B, is a subgroup of Aut(F},) and the representation p 4 defined
above is in fact the representation of V B,, into W B,,11. In the virtual knot
theory as in the welded knot theory we have analogs of the Alexander
theorem: every link is equivalent to the closure of some braid.

Are there some non-equivalent virtual links L, and L/ that are the closures
of the virtual braids: L, = B; and L) = BZ for some 8, € VB, 5, € VB,

-

such that the welded links p4(5,) m) are equivalent as welded links?

4. The flat virtual braid group F'V B,, is the quotient of the virtual braid group
V B, by the relations

Is there a representation ¢: FV B, — Aut(F,,) for some m such that in
the image the forbidden relations

e(pi)p(oir1)p(oi) = loir)p(oi)e(pivr), i=1,2,....,n—2

do not hold?

8.4 Questions from Karene Chu

1. Long Virtual Knots and Long Flat Virtual Knots: Even though (round) flat
virtual knots are not well understood, it turns out long flat virtual knots can
be completely classified. They are in bijection with the subset of all signed
permutations of in which consecutive pairs are not sent to oppositely signed
consecutive pairs [28]. For example, 1 — (3,4), 2 — (2,—), 3 — (4,—),
4 — (1,4) is excluded since the pair (1,2) is mapped to the oppositely
signed consecutive pair ((3,+),(2,—)). This classification is an invariant
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on long virtual knots; in particular, it gives necessary conditions for a long
virtual which is classical, and can distinguish the long Kishino knots from
the unknot. How can we use this invariant to understand long free knots,
or round flat virtual knots, both of which are quotients of long flat virtual
knots?

Long flat virtual knots are also equivalent to long descending virtual knots
by sending each flat real crossing to a descending crossing. The long de-
scending virtual knots all have cyclic fundamental groups. What are the
characteristics of the knot polynomials on this subset of long virtual knots?

In fact, flat virtual pure tangles, whose skeletons are labelled long strands,
are also completely classified by the same approach. There is a well-defined
map from flat virtual braids in to flat virtual pure tangles simply by inter-
preting the braid diagram as a tangle diagram. It was pointed out in Chu’s
talk that if this map is injective, then this classification also gives normal
forms for flat virtual braids. How to show that this map is injective?

Virtual braids and flat virtual braids and braid-like virtual knots: The clas-
sifying spaces for both the flat virtual braid group and the virtual braid
group have been constructed in [4]. (In this paper the flat virtual and
virtual braid groups are called the triangular and quasi-triangular groups
respectively.) Indeed, the classifying space of the flat virtual braid group is
a beautiful space which is the quotient of the permutohedron by a natural
action of the symmetric group. But from another perspective, what are the
characterizations of the flat virtual or virtual braids in terms of embeddings
into surfaces or thickened surfaces with boundary modulo stabilization?

The equivalence generated by the subset of “braid-like” Reidemeister 11
and III moves, defined in Fig. 7?7, is a proper subset of the equivalence
generated by the set of all Reidemeister IT and III moves. The set of virtual
knot diagrams modulo only braid-like Reidemeister moves are called braid-
like virtual knots by Bar-Natan. One can construct quantum invariants
of these simply by “attaching R-matrices of quantum groups to the real
crossings” and ignoring cups and caps, unlike for classical knots (see [129]).
What are braid-like virtual knots topologically?

Welded braids and Knots: The welded braid group is the basis-conjugating
subgroup of the automorphism group of the free group and includes the
classical braids. It has been completely classified with normal forms in [62].
We can ask which properties of the classical braid group are also possessed
by the welded braid group, e.g., automaticity, orderability, linearity?
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8.5 Questions From Micah W. Chrisman
8.5.1 Finite-Type Invariants

Finite-type invariants of classical knots can be understood through the Kontse-
vich integral, configuration space integrals, and combinatorial formulae (see [98]).
There is no corresponding general theory for Vassiliev invariants of virtual knots.

There are two notions of finite-type invariants of virtual knots: the Goussarov—
Polyak—Viro finite-type invariants and the Vassiliev finite-type invariants (intro-
duced to the virtual knot case by Kauffman). There is a universal finite-type
invariant for the GPV finite-type invariants by way of the Polyak algebra. On
the other hand, there is no known universal finite-type invariant for Vassiliev
finite-type invariants.

In fact, the two types are quite different. The GPV finite-type invariants are
finitely-generated at every order. The Vassiliev finite-type invariants are however
infinitely generated. There is even an infinite number of different extensions of
the Conway polynomial to virtual knots, all satisfying the same skein relation
and whose coeflicients give an infinite family of finite-type invariants of every or-
der [21]. Also, there are obstructions for when a Vassiliev finite-type invariant can
be represented by an arrow diagram formula in the sense of Goussarov—Polyak—
Viro. For example, an integer valued Vassiliev invariant which is invariant under
the virtualization move cannot be a GPV finite-type invariant [23].

1. Classify all obstructions for a Vassiliev finite-type invariant to be a GPV
finite-type invariant.

2. (see also [25]) Let ¥ be a compact oriented surface. Let G be an abelian
group, VX the isotopy classes of oriented virtual knots, and K[X] the iso-
topy classes of oriented knots in ¥ x I. Let x: X[X] — VX denote the
projection of knots on ¥ x I to virtual knots. For a set S, let Z[S] denote
the free abelian group generated by S. If v: X — G is a Vassiliev finite-
type invariant of virtual knots, prove that there is a finite-type invariant of
knots in X x I such that the following diagram commutes:

N

8.5.2 Prime decompositions of long virtual knots

Long classical knots commute under the the operation of concatenation. On the
other hand, concatenation is not a commutative operation for long virtual knots.
This was first proved by Manturov [173], but has since been established by many
authors using a variety of techniques. Certainly, if either A or B is classical, then
A#B = B#A. If A, B, C, D are linear prime non-classical long virtual knots,
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A#B = C#D, and A#B is non-classical, then A = C and B = D [24]. This
gives a partial answer to the Manturov’s conjecture. In the virtual knot case, an
existence and uniqueness theorem for prime decompositions of virtual knots has
been proved [135, 185].

1. Besides concatenation, there are other kinds of decompositions for long
virtual knots. For non-classical long virtual knots A and B that are prime
relative to these decompositions, is it possible for the concatentation A#B
to be expressed as any other type of decomposition into A and B?

2. Prove an existence and uniqueness theorem for prime decompositions of
long virtual knots.

3. Prove a generalization of Kuperberg’s theorem to virtual tangles. There
are a few generalizations of Kuperberg’s theorem appearing explicitly in
the literature [13, 24, 119, 186].

8.5.3 Connections between classical and virtual knot theory

Virtual knot theory can be applied to studying 1-knots in 3-manifolds and links
in S3 with at least two components. The technique is called the theory of virtual
covers [22, 26, 136].

The technique may be described as follows. Let N be a compact oriented
3-manifold and K a smooth knot in N (written KV). Suppose that N admits a
covering space II : ¥ x (0,1) — N and that there is a smooth knot £ in ¥ x (0, 1)
such that II(¢) = K. Then ¢ can be considered as a knot in ¥ x [0, 1] via inclusion
and projected to a virtual knot v. Then we say that (EEX(O’U,H, KN is a virtual
cover with associated virtual knot v. If II is regular and & is contained in a
fundamental region of II, then it is said to be a fundamental virtual cover.

The theory has been studied in detail in the case that N is the complement of
a fibered knot, a multi-component fibered link, and a virtually fibered 3-manifold
(possesses a finite-index cover that is fibered over S'). For such N, inequivalent
knots can be detected by applying virtual knot invariants. The non-invertibility
of knots in manifolds can also be detected. Moreover, minimality theorems can be
proved for diagrams of knots in a manifold relative to fiber of the fibration [136].

1. The theory of virtual covers uses virtual knot theory to study links of at
least two components in S2. Is there an extension of the theory of virtual
covers to one component links (i.e. knots) in S3.

2. Use virtual covers to find a relation between the Milnor p-invariants and
invariants of virtual knots. Can virtual covers be used to apply Milnor’s
theory to one component links (i.e. knots)?

3. How well does a virtual knot associated to a virtual cover of a classical link
behave under local moves (non-isotopy) applied to the link? Of particular
interest would be moves such as crossing changes, self-A moves, and Z-
moves.
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4.
5.

Can virtual covers be used to detect mutations of classical links?

Every virtual knot v is the associated virtual knot for a fundamental virtual
cover of some two component link KLIJ, where J is fibered and 1k(J, K') = 0.
Find a complete set of moves on such two component links which do not
change the virtual isotopy type of the associated virtual knot.

Let J be a link in S and K a knot in the complement N of J. Let v be a
virtual knot associated to a virtual cover (¢2*©D I, K'V). If v is a prime
virtual knot, must K be prime as a knot in S3?

8.5.4 Cobordism of Virtual Knots

In recent talks, Kauffman has defined notions of cobordism, concordance, slice,
and ribbon for virtual knots. Turaev [212] has introduced a notion of cobordism
for knots in thickened surfaces. A knot in R? x R that is slice in the classical is
slice in both the notions of Turaev and Kauffman. In [212], it is observed that
it is unknown whether the converse is true

1. Are there any classical knots that are non-slice in the classical sense but
are slice in the the sense of Kauffman (when considered as virtual knots)
or Turaev (when considered as a knot in a thickened surface)?

2. If a knot in the thickened surface is slice in the sense of Turaev, does it
necessarily stabilize to a virtual knot that is slice in the sense of Kauffman?
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